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Figure 15. Soft-sediment deformation features, Catskill front. a) large dish/pillow structure of sandstone in mixed sandstone and 
shale. Upper middle part of the Middle Devonian Mount Marion Formation, Rte. 28, northwest of Kingston. Fieldbook for scale, 
at lower right of dish; b) pillow-like structures, with “wrinkled” surfaces, developed in sandstone-only strata. Upper part of the 
Mount Marion Formation, Rte. 23 near Leeds (Stop 5); c) various soft sediment deformation structures in mixed sandstone-shale 
facies. Upper middle part of the Mount Marion Formation, on the author’s land, East Berne, Albany County. Pen for scale at 
lower center; d) structurally complex SSD zone, between undisturbed strata of similar facies; same outcrop as photo c; e) large, 
isolated sandstone boudins within ca. 3.5 m-thick deformed zone. Upper middle part of the Mount Marion Formation, Moray Hill 
Rd., NW of Kingston. Field book in lower right for scale; f) SSDs in sandstone only fluvial channel facies. Lower part of Upper 
Devonian (?) Oneonta Formation, along trail to Artists Rock and Sunset Rock, North-South Lake. Note rough similarity of struc-
tures to trough cross-bedding; however, margins of troughs are vertical water escape structures.
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In the Oneonta Formation, along the crest of the Catskill Escarpment, one or more SSDs have been noted in Kaater-
skill Clove and near North-South Lake (Fletcher, 1967; Gale, 1985; this paper; Stop 7, Figure 15f, g). When first 
viewed along the trail to Artists Rock at North-South Lake, one interval of sandstones appear to feature numerous 
trough cross-beds. However, a closer examination indicates that the edges of the troughs are at near-vertical to ver-
tical angles, far beyond the angle of repose. Those edges actually represent dewatering structures, and the troughs, at 
least in part, represent lows where sand grains settled lower, via foundering and post-liquifaction repacking into 
more condensed deposits.

One of the interesting characters of many SSDs in the Catskill Front is their occurrence within specific layers, sur-
rounded by layers of similar lithology throughout the rest of an outcrop. Most or all of the surrounding strata show 
no deformation.

DISCUSSION

Sedimentation and Sea Level History

Sedimentation Trends and the Acadian Orogeny. The major carbonate-quartz arenite and initial terrigenous clast-
ic packages of strata above the Wallbridge unconformity feature markedly different patterns of sediment type, depth-
related facies, and stratal distribution and geometry. 

Variations in sediment type between the intrabasinal carbonates (+/-quartz arenites) versus extrabasinal clastics are, 
of course, related to changes in sediment source/provenance. Most of the carbonate is derived from biogenic produc-
tion of shell matter by marine organisms (e.g., brachiopods, crinoids). Quartz arenites, including quartz conglomer-
ates, are largely derived from reworking of supermature sediments within or on the fringes of the basin. Terrigenous 
clastics, in contrast, derived from erosion of previously existing rocks eroded from regional highlands and transpor-
ted into the basin

The relatively widespread distribution of the limestones of the Helderberg Group, along with the Glenerie-Oriskany, 
Onondaga, and Tully formations reflect widespread shallow seas, characterized by relatively high carbonate produc-
tion rates by shelly organisms living in shallow, relatively clastic-free tropical seas. The distinct wedge-shaped geo-
metries, especially of the initial clastics overlying the carbonates indicate the influx of detrital materials eroded from 
a regional source area, accompanied by close to full cessation of carbonate production with clastic input.

The contrasting pattern of relatively shallow versus deep water litho- and biofacies of carbonate versus initial clastic 
deposits is associated with flexure of the crust underlying the foreland basin system. Crustal loading associated with 
orogenic buildup leads to subsidence of the crust, the shutoff of the carbonate production, and initial sediment star-
vation with transgression. Subsequent low sedimentation rates of suspended fine-grained sediments, combined with 
deposition/preservation of organic matter in deep water anoxic sediments, leads to the formation of basinal black 
shales.

Another contrast between the carbonate versus initial clastic suites is the widespread nature of the former and the 
more proximally-restricted distribution of the latter. Carbonate production, active across the basin during limestone 
deposition, shut down with the onset of clastic deposition, even in distal, clastic-starved areas of the foredeep basin 
in New York. 

These major patterns, associated with development of three to four separate clastic wedges punctuated by carbon-
ates, were interpreted by Ettensohn (1985) to reflect tectonically-active to -quiescent phases (“tectophases”) during 
the Acadian orogeny. He proposed four separate Acadian tectophases,  from the upper Lower Devonian through 
Lower Mississippian. The onset of tectonism in each tectophase resulted in subsidence of the basin foredeep and de-
position of the basinal dark gray to black shales. Subsequent development through a tectophase culminated in a re-
turn to tectonic quiescence and deposition of carbonates. In general, Ettensohn’s (1985) basic model still appears to 
explain a number of trends in the foreland basin sedimentary rock record. The relationship of his model to data and 
interpretations by researchers working in the orogen itself is still largely unclear to the author. More discussion of 
sedimentary evidence of orogenesis and the tectophase model are needed with peers working in the orogenic belt.
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We now know that Acadian orogenesis begin in Late Silurian in Maine and New England (e.g., Bradley et al., 2000), 
and progressively migrated cratonward through the Lower to Upper Devonian. The earlier initiation of the orogeny 
was not readily visible to Ettensohn (1985). This is now understood by the author to be due to: 1) early in the Acadi-
an event, the orogen, its deformational front, and most of the Acadian foreland basin system (wedge-top, foredeep 
and forebulge) were still geographically positioned in New England to easternmost New York, and; 2) Ettensohn 
(1985, 1987) was working with data from the eroded remnant of the greater Acadian foreland basin, which starts on 
the west side of the Hudson River, far cratonward of the Late Silurian interface of the orogen and foreland. During 
the initial stages of the Acadian orogeny, the Catskill front was geographically situated in the far cratonward back-
bulge basin of the foreland basin system – marked by deposition of the Rondout and Helderberg carbonates. Por-
tions of the early Acadian foredeep are preserved in northern New England, in thick, flysch units like the Lower 
Devonian Littleton Formation of Vermont and New Hampshire. 

Through time, the orogenic front and successive portions of the foreland basin (wedge-top, foredeep, and forebulge) 
migrated cratonward, some of which passed west of the position of today’s Hudson River. By the Late Devonian, the  
wedge-top portion of the basin, characterized by deformational thrusting and uplift, may have migrated into the Cat-
skill Front. Interpretation of this is dependent on whether any of the structural deformation in the Catskill Front is of 
Devonian/Acadian age – a point of ongoing of debate (e.g., Geiser and Engelder, 1983; Marshak, 1986; Marshak 
and Tabor, 1989; Zadins, 1989).

Eustatic and Tectonic Effects on Relative Sea Level. Two of the most important factors affecting relative sea level 
change are global eustatic sea level processes and regional, tectonic-induced subsidence. There have been many de-
bates over the relative effects of these two processes in foreland basin systems. A series of third order depositional 
sequences/sea level cycles from the Devonian Appalachian basin Devonian are outlined in Figure 8. Many of the se-
quences have been correlated outside of the basin (e.g., Johnson et al., 1985; House and Kirchgasser, 1993; Bartho-
lomew, 2006), indicating their global, eustatic nature. Figure 8 compares relative sea level curves for the Appalachi-
an basin sequences and Johnson et al.’s (1985) Euramerican curve. The Appalachian basin sequences show some re-
finements over the Euramerican curve (e.g., base of transgressions placed at position of lowstand or initial trans-
gressive litho- and biofacies; cycles added where Johnson et al., 1985 overgeneralized the sea level history). Ac-
counting for these refinements, data from New York and globally indicate correlation of individual sequences/cycles 
(e.g., House and Kirchgasser, 1993; Brett and Baird, 1996; Over, 2002; Filer, 2002; Ver Straeten, 2007a). However, 
where the Euramerican curve shows overall transgression from the middle Lower Devonian to middle Upper Devo-
nian, the Appalachian basin curve is marked by three major transgressive to regressive pulses, superposed over the 
record of third order cyclicity. These are the effects of tectonically-induced loading and subsidence in the foreland 
basin. The three major transgression mark the onset of three separate Acadian tectophases (Tectophases 1 to 3 of 
Ettensohn, 1985). Of importance, it is clear that these major subsidence events are superposed over the distinct re-
cord of eustatic sea level cycles in the foreland basin.

Clastic Rock Petrology and Provenance Changes in detrital grain mineralogy through foreland basin successions 
provide information about changes of the rocks exposed within source areas through time (provenance). The pres-
ence of abundant quartz, K-rich feldspars and granitic rock fragments, or minerals such as staurolite, kyanite and 
high  grade  metamorphic  rocks fragments  indicate  very  different  rocks exposed  in  their  respective  sedimentary 
source areas. These may reflect changes of provenance, although the record may also be affected by grain size vari-
ation, transport distance, or depositional environment (Gale, 1985).

Conglomerates  Discussion.  The new conglomerate  analysis  presented here provides  additional  perspectives  on 
changing clastic composition and provenance over approximately 40 million years, (ca. 410 to 370 million years 
ago). Initial vein quartz conglomerates (mid Lower Devonian Connelly Conglomerate and uppermost Lower to basal 
Middle Devonian Kanouse Sandstone) at  ca. 410 and 395 Ma were likely derived from erosion of intrabasinal 
sources, such as the Silurian Shawangunk and correlative Green Pond Formations in southeastern New York and ad-
jacent New Jersey.

Succeeding quartz- and chert-rich polymict conglomerates in the upper Mount Marion Formation (Sample 3, ca. 388 
Ma) clearly indicate a change in source area. The introduction of the chert and sandstone clasts, not present in the 
lower samples, is the result of deposition of synorogenic sediments from outside the basin. The varied colors of the 
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cherts (i.e., gray, light gray to white, dark gray to black, and red) imply the erosion of multiple levels of strata in the 
source area. Variously colored cherts are found in Cambrian and Ordovician strata east of the Hudson River – al-
though no green cherts, characteristic of some of those rocks (e.g., Mount Merino Member, Normanskill Group) 
have been noted. 

The overlying Upper Devonian conglomerates of the Oneonta Formation (Samples 6 and 7, ca. 384 Ma) to Slide 
Mountain Formation (based on general statements in Fletcher, 1967; Gale, 1985; ca. 376 Ma) are characterized by 
abundant quartz and sandstone clasts. Chert content has declined to almost negligible amounts. Chlorite is found in a 
number of the sandstones, which may indicate low grade metamorphism of some of the strata, or incorporation of 
low-grade metamorphic sediments into the sandstones. The latter could have happened during the Lower to Middle 
Devonian, off to the east before the foredeep of the basin migrated westward into the Hudson Valley area. Their oc-
currence could be explained by uplift, exposure and erosion of those sandstones above thrust fault slices in the 
wedge-top of the foreland basin system. This would be consistent with Fletcher (1967) proposal that the red sand-
stone pebbles in the Slide Mountain Formation may have been cannibalized from Devonian sedimentary rocks fur-
ther to the east. However, further petrologic and possibly palynological study is needed to resolve this issue.

The four Famennian-age conglomerates (ca. 376-370 Ma) from western New York are quartz-rich (83-98%), espe-
cially the two younger mid-Famennian samples. These nearly compare to the oldest conglomerates in the succes-
sion, which were 100% macrocrystalline vein quartz. However, the composition of the younger Famennian con-
glomerates may have biasing influences different from all of the older samples. Clastics in western New York may 
have been derived from a broader or different source area along the orogen (e.g., beyond eastern New York and/or 
Pennsylvania outcrops), yielding a different pebble composition from those in the Catskill Front. Their occurrence 
far into the foredeep basin also implies a greater transport distance for the clasts. The conglomerate from the lower 
Cattaraugus Formation, near Amla, New York lies approximately 340 km west of Catskill escarpment. How far it 
would be to similar sources of clasts southeast of the Pennsylvania outcrop belt is unknown to the author. Long dis-
tance transport through high gradient wedge-top to low gradient delta plain streams wear down and destroy less dur-
able clasts (e.g., Cameron and Blatt, 1971; Ethridge, 1977; Davies and Moore, 1970). So, the great transport distance 
would favor the preservation of highly durable quartz pebbles over other clasts. How much influence this had on the 
composition of the Famennian conglomerates in New York is unknown. However, at least in part, it likely represents 
a continuance of increasing quartz content noted in the Catskill Front through the Middle to Upper Devonian Plat-
tekill through Slide Mountain formations.

To summarize, extrabasinal Devonian conglomerates record changing input of coarse clastics into the Catskill Front 
and beyond. Initial milky quartz gravels (at ca. 410 and ca. 395 Ma, upper Pragian and lower Eifelian) were suc-
ceeded compositionally by mixed chert- and quartz-rich gravels (at ca. 388 Ma, lower Givetian), to slightly increas-
ing quartz-rich gravels with abundant sandstone-/metasandstone-rich pebbles (ca. 383 to 376 Ma, lower Frasnian). 
Through the latter interval, increased numbers of red sandstone pebbles in the gravels appear to indicate erosion and 
cannibalization of Acadian-derived sandstones (Fletcher, 1967).  These would have most likely been exposed by 
thrusting in the proximal wedge-top depozone of the foreland, and subsequently transported into the foredeep. The 
youngest conglomerates from this study (ca. 376-370 Ma, lower to mid Famennian) continue the arc of increasing 
quartz content, culminating in nearly pure milky quartz compositions approaching those of the lowest conglomer-
ates.

Sandstone and Mudrock Provenance.  Sandstone petrographic studies of the Lower to Upper Devonian Catskill 
Delta succession (e.g., Lucier, 1966; Allen and Friend, 1968; Way, 1972; Rehmer, 1976; Ethridge, 1977; Gale, 1985) 
repeatedly found little to no mineralogical evidence of significant igneous or medium to high grade metamorphic 
rocks exposed within Acadian drainage basins supplying sediments to the Catskill Front. Instead, the mineralogical 
evidence largely points to exposure and erosion of low-grade metamorphic rocks (up to greenschist grade) and sedi-
mentary clastics and minor carbonates within the source area. Some very minor exceptions to this pattern were re-
ported by some authors in the sandstones. For example, Lucier’s (1966) data on heavy minerals in five samples 
found traces of medium to high grade metamorphic and igneous rocks (e.g., staurolite, hypersthene, hornblende and 
diopside-augite). In addition, Allen and Friend (1968) report clasts of pyroclastic tuffs and metamorphic granulites 
in the Twilight Park Conglomerate.
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The low-grade metamorphic and sedimentary rock grains predominantly found in the Middle to Upper Devonian 
sandstones are lithologically similar to Cambrian to Ordovician sedimentary to low grade metamorphic rocks now 
exposed in eastern New York (Lucier, 1966; Fletcher, 1987). However, unlike proposed by Lucier (1966) and others 
authors, it seems unlikely that those rocks were exposed at the surface in eastern New York between approximately 
388 to 375 million years ago. 

Hosterman and Whitlow (1983), in their study of Middle to Upper Devonian marine shales, hint at a another, dis-
guised sediment source. Their analytical results led them to interpret that during the Devonian, much of the illite and 
mixed layer illite-smecite now in the rocks was originally composed of illite and smectite clays. As smectite clays 
form from the weathering of feldspars, volcanic ash, and other similar rocks, their occurrence would indicate a more 
significant input of sediment from igneous sources than generally interpreted. 

In support of Hosterman and Whitlow’s (1983) interpretation of substantial smectite content in the Devonian rocks, 
paleosol studies in the Catskill magnafacies of New York and Pennsylvania note the abundance of vertisols, along 
with entisols, inceptisols, and alfisols (Driese and Mora, 1993; Mora and Driese, 1999; Oliver and Terry, 2009). 
Modern vertisols are characterized by a relatively high content of smectite (montmorillonite) clays. Vertical cracks, 
and deformational features such as pedogenic slickensides, bowls/gilgai/pseudoanticlines and other structures are 
diagnostic features of vertisols. These result from wetting and drying of the soils (commonly seasonal), and resultant 
expansion and contraction of the smectitic clays. Though substantial amounts of smectite are not preserved in the 
Catskill succession today, the widespread occurrence of vertisols also appear to indicate its strong presence during 
the Devonian.

Apparent substantial smectite content in the strata during the Devonian appear to indicate a hidden source of ig-
neous-derived sediment. Interestingly, Hosterman and Whitlow (1983) note the similar alteration of Devonian airfall 
tephras to K-bentonites. These beds, originally composed of volcanic glass and phenocrysts, were diagenetically 
altered to smectitic clays, and then further altered to mixed layer illite-smectite clays and illite. 

To summarize, these clay mineralogy and paleosol studies indicate that during the Devonian, fine-grained sediments 
in New York and the Appalachian basin had a significant component of smectitic clays, apparently derived from the 
weathering of igneous rocks or volcanic ash. This sharply contrasts with the data from sandstones and conglomer-
ates outlined above, which portray a source very restricted to sedimentary to low grade (slate to greenschist) meta-
morphic facies. 

More  recent  provenance  studies,  using  different  techniques,  also  portray  a  more  complex  picture  of  sediment 
provenance in the Catskill front and adjacent areas. Aronson et al.’s (1994) dates of detrital micas (mostly 406-387 
Ma) from Upper Devonian to Lower Mississippian clastics in New York and Ohio appear to indicate the much of the 
Catskill clastic wedge have an Acadian-age provenance. They calculated that Taconic- and Grenville-age sources 
could comprise no more than about 30% and 5% of sedimentary sources, respectively.

McLennan et al.’s (2001) U-Pb ages of detrital zircons from lower Walton Formation yielded SHRIMP U-Pb ages of 
1.23-1.00 Ga (Grenville  age)  and 470-420.  In  the absence of  clear  Acadian  age detrital  zircons in  their  single 
sample, they projected that Acadian sediments appear to recycle pre-existing, pre-Devonian rocks from along the 
continental margin of Laurentia. 

Zack et al.’s (2004) geothermometry analysis of detrital rutiles from the same outcrop as McLennan et al. (2001) in-
dicated that the rutiles were derived from a broad range of low to high (greenschist/blueschist to granulite) grade 
metamorphic rocks. The authors interpret the rutiles to be eroded from Pre-Cambrian gneissic terranes, and depos-
ited  in  pre-Taconian  orogeny  sedimentary  successions.  During  the  Devonian,  they  were  eroded  from  post-
Grenville/pre-Taconian sedimentary or sub-greenschist grade metasedimentary rocks in the Acadian orogen. 

Two recent studies of Devonian to Pennsylvanian sedimentary successions in the eastern U.S. (Thomas et al., 2004; 
Eriksson  et al., 2004) hypothesize that synorogenic foreland basin sediments incorporate clastic detritus from the 
erosion of previous orogenic events, but not from the current orogeny. This appears to agree overall with the data 
and interpretations of McLennan et al. (2001), and the numerous petrologic studies of Middle to Upper Devonian 
strata in the Catskill Front (e.g., Burtner, 1964; Lucier, 1966; Fletcher, 1967; Gale, 1985). However, all of these 
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studies are in sharp contrast with the results of Aronson et al.’s (1994) detrital micas dates, and projected dominance 
of Acadian sources of sediment during deposition of the Catskill delta. 

As pointed out by McLennan et al. (2001) these contrasting data and interpretations are in part a result of analysis of 
very different detrital  grains  (e.g.,  zircons versus white  micas),  which may have different deep versus shallow 
sources in an orogen, and be biased by weathering/abrasion and transport processes. It is intuitive that Acadian-age, 
non-volcanic zircons would be sourced from deeply buried igneous or metamorphic rocks, whereas Acadian-age 
white  micas  could  be  readily  sourced  from shallowly  buried,  low-grade  metamorphosed  rocks.  Deep  Acadian 
sources, exposed at present in New England, would not have been unroofed during the Devonian. In contrast, Upper 
Silurian to Middle Devonian synorogenic sediments, or Taconic metamorphics re-exposed to >350oC temperature 
conditions during the Acadian orogeny, would be less deeply buried, and become exposed and weathering in the oro-
gen.

And, as also pointed out by McLennan et al. (2001), while highly durable zircons last through multiple events that 
recycle sediments, micas are readily weathered, or broken down by transport processes, and disappear relatively 
quickly. One would expect to find older zircons in clastic sediments, but less so older micas.

Another key issue in this debate may be the small number of analyses performed, on a stratigraphically- and region-
ally-limited number of samples. A more systematic geochemical and geochronologic analysis of the Lower to Upper 
Devonian succession in the Catskill Front (and other areas) is needed.

One more point should be expressed on this issue. Low grade metamorphic rocks are known to be the source of a 
significant component of Catskill delta sediments. While interpreted to be Taconian in age by earlier workers (e.g., 
Burtner, Lucier etc.), Aronson’s dates constrain their source to be largely Acadian. Where would such Devonian sed-
iments be sourced from? 

The author provides the following hypothesis as a plausible explanation. Early in the Acadian orogeny, a massive 
volume of Upper Silurian to at least Lower Devonian synorogenic sediments were deposited in the foredeep basin in 
New England (e.g., Littleton Formation). A great thickness of these was deposited over the top of the rocks of the 
Taconian orogen in the basin foredeep. As the Acadian orogenic front migrated cratonward through time, these early 
foredeep sediments, and underlying rocks, were subjected to regional metamorphism. Later in the orogeny, these 
early Acadian synorogenics would have been uplifted along thrust sheets and exposed in the wedge-top of the fore-
land basin, and cannibalized, providing unaltered to low-grade metamorphosed Acadian sediments to younger Aca-
dian synorogenic sediments. Although some older rocks may have been thrust to the surface, much of what should 
have been exposed in the orogenic front should have been the younger Upper Silurian to Lower Devonian rocks. 
This thick younger succession would largely have to be unroofed first to get to underlying Taconian-age rocks. 

The author finds it most plausible that the fine-grained sediments, sedimentary and low-grade metamorphic rock 
fragments, and conglomerate clasts in the Catskill Front were derived from Acadian, not Taconian sources. At least 
in part, older more durable grains, like zircons and rutile, were likely eroded from pre-Devonian sources early in the 
orogen, and deposited in the Devonian succession of the early Acadian foredeep, and later uplifted and cannibalized.

In summary, the provenance of at least Middle to Upper Devonian sandstones and mudrocks in the Catskill Front ap-
pear to be derived largely from sedimentary and low grade metamorphic rocks in the Acadian orogen. Between ap-
proximately 388 and 376 million years ago (Mount Marion to Slide Mountain formations), there were no major 
changes in sediment composition, and hence no major changes in rock types exposed and eroding within the pa-
leodrainage basin feeding into the Catskill Front. In contrast with previous interpretations, it seems plausible that 
Catskill delta clastics were largely derived from Acadian sources, not Taconian. Little if any significant magmatic or 
high-grade metamorphic rocks were exposed in the orogen, within the paleodrainage basin. A hidden source of 
abundant smectitic clays, derived from weathering of igneous rocks, may have come from airborne volcanic ash.

Foreland Basin Tephras and Acadian Volcanism/Magmatism. At this time, more than 80 beds of volcanic airfall 
origin are documented from Lower and Middle Devonian Lochkovian to  Eifelian stages)  strata  across  the Ap-
palachian basin. Additional beds are known from the upper Middle to Upper Devonian, but more work is needed in 
that interval. Stepping back, however, what are the broader implications of this data for the history of Acadian paleo -
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volcanism? Can the record of tephra beds preserved in foreland basin sediments be used as a proxy for the timing 
and character of explosive plinian volcanism in a magmatic belt like the Acadian orogen? 

Tephra Beds as a Proxy for Paleovolcanism. The traditional view of volcanic airfall tephras (including the New 
York’s Devonian K-bentonites) is that a single tephra bed is the result of a single volcanic eruption. Recent studies, 
however, indicate that many beds have a complex depositional history, resulting from reworking of tephra sediments 
and/or the amalgamation of multiple eruptive events into a single layer. Furthermore, a broad range of physical, bio-
logical, and chemical processes active in individual environments can lead to preservation, mixing or destruction of 
airfall tephra layers. 

Ver Straeten (2004a) explored these issues and their implications for explosive Lower to Middle Devonian volcan-
ism in the Acadian orogen (see also Ver Straeten, 2005, 2007b, 2008; Benedict, 2004; and Ver Straeten et al., 2005). 
Based on the record of tephras in the foreland basin fill, and recognizing potential preservational biases in that re-
cord, Ver Straeten (2004a) proposed that the mid-Lochkovian, lower Emsian and lower to middle Eifelian stages 
were times of increased volcanism in the mountain belt.  These times correspond to deposition of the Bald Hill, 
Sprout Brook, and Tioga Middle Coarse Zone and Tioga A-G tephra clusters. Ongoing search of the literature on 
Devonian magmatism and volcanism from the Acadian orogen seems to support those interpretations (see lower Em-
sian discussion below). 

As noted in the provenance discussion, other lines of evidence (smectite clay mineralogy and vertic palesols) appear 
to indicate the presence of an otherwise disguised igneous source in the Devonian strata. This could be derived from 
weathered  igneous  rocks  in  the  orogen,  reworking  of  pre-Acadian  sedimentary  rocks  in  the  orogen  rich  in 
smectite/igneous minerals, or weathered Acadian-derived volcanic ash deposited by airfall in the foreland basin

Lower Emsian magmatism and volcanism in the Acadian Orogen. Figure 14 appears to indicate that packages of 
multiple Sprout Brook K-bentonites can be physically correlated from the Catskill front to Helderbergs in eastern 
New York. This is dependent on the separation of a few closely-spaced K-bentonites from others by thicker beds of 
background siliceous siltstones to cherts. Thickest siltstone/chert beds appear to underlie the insertion of the sets of 
thin K-bentonites. 

These patterns resemble small-scale parasequences, developed in clastic-dominated facies. Increased sedimentation 
of marine sediments during a fall to lowstand of sea level (small-scale falling systems and lowstand systems tracts in 
sequence stratigraphy terms) would yield thicker siliceous siltstones to cherts. Succeeding sea level rise (a small-
scale transgressive systems tract) and resultant shutoff of clastic sedimentation would allow for accumulation of 
whatever alternative sediment was available in the environment. It this situation, that would be airborne volcanic te-
phra from a single to multiple volcanic eruptions in the orogenic belt. The accumulation of exclusively volcanic te-
phra could occur over sediment-starved intervals of time because no other sediment was available. A detailed discus -
sion of tephra deposition and sediment condensation in a context of sea level change is provided in Ver Straeten 
(2008).

The lower part of the Esopus Formation (Spawn Hollow Member) marks a major sea level rise, via a combination of 
a third order eustatic sea level rise, and superposed tectonically-induced basin subsidence (Ver Straeten, 2007a; Fig-
ure 8). Shutoff of carbonate production, and relative clastic sediment starvation due to sea level rise could poten-
tially result in periods of time where the only sediment available for deposition in the environment might be airfall 
volcanic ash (Brett and Baird, 1990; Puspoki et al., 2008; Ver Straeten, 2008).

Supporting evidence for application of such a model in lower Esopus time come from geochemical analysis of apat-
ite phenocrysts from the Sprout Brook K-bentonite beds by Benedict (2004; and in Ver Straeten et al., 2005). His 
work indicates that a single tephra bed sometimes yields phenocrysts with different geochemical signatures. Those 
signatures imply deposition of ash from different volcanic sources, or at least different eruptive events, within a 
single bed.

Puspoki et al. (2008) carefully documented such a case of enhanced sedimentation of tephra from multiple eruptions 
with clastic sediment starvation during a major Miocene transgression. In their remarkable study, deposition during 
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some parasequences consisted wholly of volcanic ash sediments; the delineation of individual parasequences was in 
some cases only possible by the degree of weathering and alteration of volcanic to clays at transgressive surfaces. 

Let’s extend this line of thought further. If the patterns of a few clustered Sprout Brook tephras (separated by thicker 
beds of marine deposits) are interpreted to represent small-scale cycles, the sections at Becraft Mountain to Cal-
lanans Corners could possibly represent six such cycles. If each cycle is interpreted to represent a Milankovitch pre-
cessional cycle, of approximately 23,000 years duration, then the entire Sprout Brook succession could represent 
23,000 x 6 = approximately 138,000 years. If individual couplets of K-bentonite + background marine beds repres-
ent a single parasequence and the six packages represent approximately 100,000 year  Milankovitch eccentricity 
cycles, then the succession would comprise on the order of 600,000 years.

Where is all of this volcanic ash coming from? Is there supporting data in the Acadian orogen to interpret such ongo-
ing and extensive volcanism during deposition of the Sprout Brook K-bentonites?

Lower Emsian-age igneous rocks occur in both the greater Acadian foreland basin and the Acadian orogen. A num-
ber of these have an overlapping error range with the Sprout Brook K-bentonites cluster in the Appalachian basin 
(408.3 +/- 1.9 Ma; Tucker et al. 1998). These include at least six different deposits of volcanic rocks, and numerous 
plutons in New England, Quebec and New Brunswick (e.g., Bradley et al., 2000; Ver Straeten, 2004b). 

The Sprout Brook K-bentonites, in the lower part of the Esopus Formation (Spawn Hollow Mbr.),  are found in 
northeastern New York (Ulster and Otsego counties; Ver Straeten, 2004b). Locally, in the southern part of the basin, 
beds with mixed volcanogenic and detrital grains, are found (Conkin and Conkin, 1979; Ver Straeten 2004b). 

A relatively large number of lower Emsian volcanic and magmatic rock units with an overlapping error range with 
the Sprout Brook K-bentonites (ca. 409 to 405 Ma) are reported from the Acadian orogen, chiefly from Maine (see 
references below). Theses include the Traveler, Kineo and other rhyolitic ashflow tuffs erupted from five major vol-
canic centers in north-central to western Maine. All along the belt, the rhyolites are underlain by quartz-rich sand-
stones (Matagamon Formation) equivalent to the Oriskany Formation in New York (Boucot, 1969; Rankin, 1968, 
Rankin and Hon, 1987). Furthermore, some of the rhyolites are overlain by marine sedimentary rocks correlative 
with the Schoharie Formation in New York (Boucot, 1969). 

The widely known Mount Katahdin in north-central Maine is one of the lower Emsian granitic plutons. Katahdin’s 
northeastern flank is draped by its co-magmatic ash flow tuffs (Traveler Rhyolite; Rankin, 1968). Rankin and Hon 
(1987) conservatively estimate the preserved volume of the Traveler Rhyolite alone is approximately 800 km3. This 
volume compares with major Cenozoic tuffs in the western U.S. (e.g.,  Timber Mountain, Paintbrush, and Lava 
Creek tuffs, 900 km3, 1000 km3 and 1000 km3, respectively; Christiansen, 1979, p. 31). The bottom and top of the 
Traveler Rhyolite has been dated at 407.3 +/-0.5 and 406.7 +/-1.4 Ma. The nearby Kineo Rhyolite yielded an age of 
406.3 +/-3.8 Ma (Bradley et al., 2000). These volcanic rocks are all within the range of error for the Sprout Brook 
K-bentonites.

The ages of numerous additional lower Emsian-age felsic plutons in Maine and New Hampshire are reported by 
Bradley et al. (2000). Further plutonic rocks with dating errors that overlap with the Sprout Brook K-bentonites are 
reported by  Tucker and Robinson (1990), Bevier and Whalen (1990),  Rankin and Tucker (1995), Robinson and 
Tucker (1996), Ludman and Idleman (1998), Solar et al. (1998), Eusden et al. (2000), and Tucker et al. (2001). 

More lower Emsian volcanogenic strata from Acadian foreland basin deposits on the Gaspe Peninsula, Quebec, in 
northern New Brunswick, and in New Hampshire, (Billings, 1937, 1956; Douglas, 1970; Boucot, 1970, pers. comm., 
1993; Poole and Rogers, 1972; Doyon and Valiquette, 1987; Tucker and Rankin, in Bradley et al., 1999; and Wilson, 
2004). 

No igneous rocks of Emsian age are known from south of New England. This may be associated with erosion and/or 
cover by younger rocks. However, with close to no record of airfall tephras in the southern part of the Appalachian 
basin, it is possible that there was only minor explosive lower Emsian-age volcanic activity in the southern Acadian 
orogen. 
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The high concentration of Lower Emsian magmatic and volcanic rocks in the northern Appalachians, combined with 
the restricted distribution of airfall tephras largely in the northeast portion of the Appalachian basin suggest that the 
Sprout Brook K-bentonites originated from sources in New England, possibly even in part from the Traveler Rhyol-
ite (Ver Straeten, 2004b). Devonian-age westward directed transport by winds would have carried tephra plumes 
from New England out over the northeastern edge of the Appalachian basin, where it would have been deposited in 
the seaway in present-day eastern New York.

Soft Sediment Deformation = Seismites? The purpose of this section is to examine potential causes of soft sedi-
ment deformation in the Catskill succession, and how they may potentially relate to Acadian orogenesis. Too little 
detailed information is yet available to make clear interpretations; it is hoped this will draw attention to such fea-
tures, and lead to further investigation.

The deformation of unlithified sediments may result from various processes. These include the formation of a dens-
ity inversion via rapid deposition of dense sediments over dilute water-rich sediments; repacking of under-com-
pacted sediment layers; the escape of gases from sediments; sliding or slumping of sediments; impacts or earth-
quake/seismic shocks; waves or flood surges; tsunamis and density flows; and pressure changes on the sea floor 
from storm currents (Jones and Omoto, 2000; McLaughlin and Brett 2004; Montenat et al., 2005). They commonly 
occur (though not exclusively) in beds of alternating grain size (e.g., muds and sands or carbonates), which are sens-
itive to changes in sediment yield strength (Montenat et al., 2005). Sediments by themselves do not deform without 
a trigger to reduce their yield strength. According to Jones and Omoto (2000), deformation of unconsolidated sedi-
ment requires: 1) a deformation mechanism, which enables the material to be deformed; 2) a driving force, which 
brings about deformation; and 3) a trigger, which initiates 1, 2, or both.

In recent years, some SSDs have been interpreted to be the result of seismic shocks, generated by earthquakes. 
Termed “seismites”, they form due to powerful shocks that strongly affect water-saturated sediments, triggering a 
thixotropic reaction, which leads to liquification of sediments. Deformation then results from the expulsion and or 
intrusion of fluidized materials (Montenat et al., 2005). Selected references on seismites include Sims (1975), Pope 
et al. (1997), Jones and Omoto (2000) McLaughlin and Brett (2004), Montenat et al. (2007).

Key features of seismite beds include convolute bedding/laminations; ball and pillow/”thixotropic bowls”/”saucer” 
structures; mudstone/sandstone volcanoes/diapirs; boudins and brecciated fabrics; inclined blocks; and truncation 
surfaces (McLaughlin and Brett 2004; Montenat et al., 2005). Sims (1975) discussed criteria for correlating soft sed-
iment deformation structures with seismic events. These include: 1) Proximity to active seismic zones; 2) presence 
of potentially liquefiable sediments; 3) similarity to structures formed experimentally; 4) structures related to lique-
faction; 5) structures restricted to single stratigraphic intervals correlatable over large areas; and 6) absence of slope 
influence and failure. When interpreting ancient SSDs, criteria number 1 is often difficult to assess; geologists rely 
more on the other criteria, including their correlatability over large areas.

The SSDs in the Mount Marion and Oneonta formations in the Catskill front (Figure 15) meet many of the criteria 
for seismites. Their internal structures appear to be related to liquification of the sediments, and they feature struc-
tures (e.g., ball & pillows) similar to experimentally-generated forms. Furthermore, they are largely restricted to rel-
atively thin intervals, separated from other occurrences in similar facies, and adjacent under- and overlying beds ap-
pear undeformed. 

The sedimentary conditions needed to commonly form SSDs in shallow marine and terrestrial facies (e.g., fluid 
muds below rapidly deposited sands) occur extensively, especially in the upper Mount Marion Formation. However, 
deformed zones are generally uncommon. As noted by McLaughlin and Brett (2004) this pattern is indicative of a 
limited frequency of triggering events capable of deforming the strata.

Some SSDs in both marine and terrestrial strata in the area occur within sandstone-only layers (e.g., Figure 15b, f, g; 
Stops 4 and 7), where the sands did not founder into fluid-rich muds. This would seem to call for a significant trig-
gering event to initiate liquefaction, settling and tighter repacking of the sand grains, along with dewatering. Power-
ful seismic shocks, generated by along the Acadian deformation front, would provide a likely trigger to deform these 
sediments.
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One key line of evidence for interpreting the Catskill SSDs as seismites, however, is still undocumented. It is un-
known whether individual SSDs can be correlated from outcrop to outcrop, across broad areas. And at least in the 
upper part of the Mount Marion Formation, the author’s experience indicates that it may be difficult to establish 
such correlations, due in part to the homogeneity of facies, an apparent lack of distinctive marker beds, the thickness 
of the interval, and its limited exposure. 

Although the geographic distribution of these soft-sediment deformational units are unknown, others in the Devoni-
an succession of New York have relatively widespread distribution. Sutton and Lewis (1966) report soft-sediment 
deformation in the Upper Devonian (Frasnian) Point Bluff Siltstone Bed in western New York. They found SSD at 
all studied localities over a ca. > 775 km2 area of outcrop of the thin (ca. 12 cm-thick) unit. This is very likely a pre-
viously unreported seismite related to Acadian earthquake activity, either in the orogenic belt or along faults active 
at that time in western New York. In another study, Smith and Jacobi (1998) document soft sediment deformation in 
Upper Devonian (Famennian) strata of the Canadaway Group, and interpret them to be seismites related to syn-de-
positional movement along the Clarendon-Linden fault system. 

The stratigraphic distribution of the SSDs in the Catskill Front present an additional possible line of support for their 
interpretation as seismites. The examples from the Mount Marion and lower Oneonta formations occur in strata as-
sociated with the early stages of Acadian tectophases, as outlined by Ettensohn (1985). If the tectophase model is vi-
able, these strata should represent times of increased seismic activity, with renewed or at least increased uplift and 
deformation in the orogenic belt. 

In summary, SSDs in the Catskill Front potentially represent seismites, formed in unlithified sediments. If they are 
seismites, they provide insights into the timing of Acadian seismic activity. More work is needed documenting their 
character, distribution and, importantly, their correlatability across the region.

SUMMARY

This paper has been an attempt to provide a broad perspective of the Acadian orogeny, based on a synthesis of new 
and old data from New York’s portion of the Acadian foreland basin. Approximately 2.7 km of Upper Silurian and 
Devonian strata in the Catskill front, deposited through roughly 45 million years (ca. 420 – 375 Ma) provide a key 
source of data about the timing and character of orogenic and foreland basin evolution, erosional unroofing the oro-
gen, explosive volcanism, and perhaps seismic activity. 

Beginning in the Late Silurian, collision of the North American margin and another landmass initiated the Acadian 
orogeny in the northeastern U.S. Uplift and loading in the orogen led to subsidence and development of an adjacent 
foreland basin system (wedge-top, foredeep, forebulge and back-bulge basin). A tremendous volume of sediments 
eroding off the orogen was deposited across the foreland.

Initially, the orogen and foreland basin were largely developed in New England. Through time, both the orogen and 
foreland migrated cratonward. As a result, initial foreland basin deposits were thrust up and exposed, some of them 
subjected to low-grade metamorphism, and then eroded and transported via rivers to cratonward.

Following the Taconian orogeny, the area of today’s Catskill front was elevated and eroding from the Late Ordovi-
cian through much of the Silurian. However, in the Late Silurian, approximately 420 million years ago, the eastern 
New York high subsided and was submerged. Through deposition of the Rondout Formation and Helderberg Group, 
eastern New York was positioned in the distal, cratonward margin of the foreland basin system, in a back-bulge 
basin. Following Helderberg time, the forebulge region of the foreland migrated into and through the Catskill front; 
however, Oriskany time was an interval of relative quiescence in the mountain belt, and the forebulge was relatively 
subdued as it moved through the region. With the onset of a new tectonically active phase of the orogeny in later  
parts of the Early Devonian, the cratonward margin of the basin foredeep migrated into eastern New York, and the 
first major wedge of synorogenic clastics were deposited (Esopus Shale), followed by a gradational return to carbon -
ate deposition during another period of relative tectonic quiescence (Schoharie to Onondaga formations).

7-34



NYSGA 2009 Trip 7 – Ver Straeten

The onset of another tectonically active phase of the Acadian orogeny (ca. 390 Ma) led to subsidence and black 
shale deposition (lower Hamilton Group, Union Springs Formation), and cratonward migration of the complete fore-
deep of the foreland basin system into the Catskill Front. Within a few million years, the foredeep became overfilled 
to above sea level with mud and sand, and the Catskill front became terrestrial. The beginning of a third major tec-
tonically active phase in the orogen is less visible in the Catskill Front, but is recorded in the marine basin at about 
385 Ma, with deposition of the black Geneseo Shale.

In New York, we have insufficient data to interpret much of the older history of the Acadian orogen. But beginning 
in  the  middle  Lower Devonian,  we see  that  three  tectonically  active  to  quiescent  phases  (Tectophases  I-III  of 
Ettensohn, 1985) began at about 408, 390, and 385 Ma. 

The sediments eroding off the orogen and being shed into the Catskill front through the Middle to Upper Devonian 
indicate that rocks exposed in the source area were predominantly low grade metamorphic (up to greenschist-grade) 
and sedimentary rocks. They were most likely derived from older Devonian foreland basin sediments, not Cambri-
an-Ordovician as proposed in older studies. 

The foreland basin record of volcanic airfall tephras appears to indicate that there were peaks of explosive volcanic 
activity in the Acadian orogen at approximately 417, 408, and 391-390 Ma. Interestingly, these appear to correspond 
with the beginnings of tectonically active stages in the mountain belt.
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FIELD TRIP ROAD LOG

Mileage

0.0 Start at Plattekill Parking Lot, on the SW corner of Plattekill Ave. and Manheim Ave. (NE corner of the 
SUNY-New Paltz campus).
Turn right onto Plattekill Ave.

0.0 Immediately, at stop sign, turn left onto Manheim Blvd.
0.2 Turn right at light onto Rtes. 32 & 299
1.0 Get into right lane.
1.1 Turn right at entrance to NY State Thruway.
1.3 Get toll card at booth.
1.4 Fork right for I-87/NYS Thruway Northbound (toward Albany).
5.9-7.3 Outcrops of Martinsburg Formation. Interbedded turbidites and shales.
6.4 Catskills visible ahead.
7.3 Cross over Wallkill River.
9.9 Cross over Rondout Creek. Begin climb up onto Devonian bedrock.
11.1 Lower Devonian Glenerie Formation.
11.8 Lower Devonian New Scotland Formation?
12.5 Lower Devonian, upper part of New Scotland to Becraft formations.
13.0 New Scotland Formation.
13.4 New Scotland to Becraft formations.
14.8-15.6 Lower Devonian Schoharie Formation
15.7 Middle Devonian Onondaga Limestone (Edgecliff Member).
16.0 Onondaga Limestone (Nedrow to Moorehouse members).
16.8 Cross over Esopus Creek.
17.0 Bypass Kingston exit.
17.6-18.3 Middle Devonian Union Springs Formation (Stony Hollow Member).
19.0 Esopus Creek on right.
19.5 Cross under Rte. 209, with a classic set of Lower to Middle Devonian road cuts along it.
19.8 Cross over Sawkill Creek.
19.9 Middle Devonian Mount Marion Formation (East Berne Member).
22.0 Mount Marion ahead on left. Type section of Mount Marion Formation.
22.7 Cross over Plattekill Creek.
23.1 Stony Hollow Member again.
25.3 Mount Marion to left.
26.2 Note large quarry on north flank of Mount Marion. East Berne and Otsego members, Mount Marion 

Formation.
27.1 Bypass Saugerties exit. Most complete section of Onondaga Limestone in eastern New York, visible 

along Thruway and northbound entrance; Schoharie Formation visible at far end, right side.
28.5-29.1 Excellent section of Lower Devonian Becraft, Alsen, Port Ewen, and Glenerie formations.
29.8 Schoharie Formation (Aquetuck & Saugerties members).
32.6 Schoharie Formation.
33.2 Extensive limestone quarries in Lower Devonian Helderberg Group beyond ridge to right.
34.6 Becraft Formation (?).
34.5 Schoharie Formation.
35.3 Schoharie Formation +/- uppermost underlying Esopus Formation.
35.5 South end of long exposure along abandoned Thruway exit, ending at Stop 2 of this trip. Strata visible 

from Thruway include Schoharie and Esopus formations. Complete section of Esopus exposed.
36.2 Onondaga to Schoharie formations.
37.0-37.2 Schoharie exposed on southbound side of Thruway.

7-36



NYSGA 2009 Trip 7 – Ver Straeten

36.8 Onondaga Formation.
37.4 Cross over Kaaterskill Creek.
37.6 Schoharie Formation on west side, Onondaga Formation on east side.
38.1 Schoharie Formation.
38.3-39.5 Esopus Formation (mostly Quarry Hill Member, in middle of formation).
39.6 Cross over Catskill Creek.
39.7 Becraft to New Scotland formations.
40.0 Exit NYS Thruway at Catskill. New Scotland Formation along exit ramp.
40.5 Pay toll. New Scotland Formation on left.
40.7 Turn left onto Rte. 23b, toward Catskill.
40.8 New Scotland Formation on left, Kalkberg Formation on right.
41.0 Pull over and park on shoulder. Cross and continue ahead on Rte. 23b, then walk up exit ramp off of 

Rte. 23 to prominent angular Taconic unconformity.

STOP 1.  TACONIC UNCONFORMITY AND  HELDERBERG GROUP LIMESTONES,  CATSKILL (45 

MINUTES). This classic locality has been the subject of many field trips. For this trip, we will visit two road cuts 
along Rte. 23: a) exit ramp to Leeds/Rte. 23b, off of Rte. 23 westbound; and b) the succession on the north side of 
Rte. 23 west of Rte. 23b. We will largely focus on various features with implications for Acadian orogenesis, as in-
terpreted from the sedimentary rock record. These include the Taconic unconformity and Manlius-Coeymans con-
tact, carbonate deposition in a back-bulge basin of the foreland basin system, volcanic tephra beds (K-bentonites), 
and possible Devonian deformation of the “Little Mountains Fold-Thrust Belt” here.

Near the base of the succession, the prominent angular unconformity (Taconic unconformity) places supratidal dolo-
stones and sandstones (Upper Silurian (?) Rondout Formation) over deep water turbidite  sandstones and shales 
(Middle Ordovician Austin Glen Formation). The hiatus represents approximately 30 million years of time, and 
marks a series of events associated with the Taconian orogeny. This history begins with deep water deposition of 
synorogenic clastics, overthrusting of the rocks from western Massachusetts into eastern New York, and later uplift 
of the area due to erosional unroofing and rebound of the Taconian orogen through the latest Ordovician to Late 
Silurian. The latter resulted in the elevation of eastern New York above sea level throughout most of the Silurian, 
and restriction of the sea to western +/- central New York during most of the Silurian. Transgression of marine wa-
ters over eastern New York in the latest Silurian to earliest Devonian is at least in part due to tectonic-induced sub-
sidence and migration of the foreland basin to the east. This was associated with collision and crustal loading during 
Late Silurian, with the onset of the Acadian orogeny on the far margin of eastern North America.

The limestones, dolostones and minor shales of the Rondout Formation and Helderberg Group along Rte. 23 here 
comprise a carbonate ramp succession. They were deposited in the back-bulge basin of the greater Acadian foreland 
basin, at a time when the orogen and the main body of the foreland basin were still far to the east. The strata ex-
amined on this trip (Rondout,  Manlius,  Coeymans, Kalkberg,  New Scotland, and Becraft  formations) record an 
overall deepening- to shallowing up succession through supratidal, tidal, shoal, and shallow to deep ramp facies 
(Rondout to lower New Scotland fms.), followed by a gradational shallowing up to shoal to tidal facies (middle New 
Scotland to lower Becraft formations). In sequence stratigraphic terms, the succession comprises comprise a single 
“third order” depositional sequence, and the lowstand base of a second sequence. In total, the Rondout-Helderberg 
succession represents two major “third order” sea level cycles/depositional sequences.

The Manlius-Coeymans contact in the Catskill area was interpreted by Chadwick (1944) to represent an erosional 
hiatus. However, the wider distribution and implications of this break has only been recently documented by Ebert 
and Matteson (2003). Their detailed work through the two formations has documented at least two significant un-
conformities, including the formational contact. Noting a subtle but documented angularity to the unconformity, 
Ebert and Matteson (2003) interpret its formation to be associated with the orogen-ward migration of a bulge-like 
feature, associated with early stages of the Acadian orogen on the distant margin of North America near the Silurian-
Devonian boundary.
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Ancient volcanic airfall tephra beds, altered to clay-rich K-bentonites, occur in the Kalkberg and New Scotland 
formations along Rte. 23. This cluster of approximately 15 beds, termed the Bald Hill K-bentonites, are widely re-
ported across the Appalachian basin, from eastern New York to Virginia and West Virginia. They preserve a record 
of explosive, plinian-type volcanism in the Acadian orogen. Additional K-bentonites have been noted in the Manlius 
Formation at other localities (Ebert and Matteson, 2003; P. Rubin, pers. commun. 2007). 

The age of deformation of the strata along Rte. 23 is the subject of debate. Some workers (e.g., Marshak, 1986; Mar -
shak and Tabor, 1989; Zadins, 1989) interpreted the folding and faulting to be Devonian, at least in part. In contrast, 
Geiser and Engelder (1983) interpret the structures to have formed later, during the Late Carboniferous-Permian Al-
leghanian orogeny. It is possible that both orogenic events led to the deformation. At present, the timing of deforma-
tion is unclear.

At end of Stop 1a, return to cars.
41.3 Proceed ahead on Rte. 23.
41.4 Cross over NYS Thruway.
41.5 Beginning of another classic cut through the “Little Mountains” fold-thrust belt.
41.8 Cross over Catskill Creek. Downstream the creek passes for approximately 1 mile through the gorge of 

Austin Glen, descending stratigraphically through Lower Devonian to uppermost Silurian strata of the 
Esopus through Rondout formations, and into the Ordovician Austin Glen Formation. Classic, beautiful 
site.

41.9 Esopus through basal Onondaga Formations (Stop 1B of Ver Straeten and Brett, 1995).
42.4 Turn left at light, onto Cauterskill Road.
43.7 Cross over NYS Thruway.
43.8 Schoharie Formation.
44.1 Onondaga Formation.
45.0 Cross over Kaaterskill Creek. Ordovician Austin Glen Formation exposed in creek bed to left.
45.05 Turn right at stop sign, continuing on Cauterskill Road. Kaaterskill Creek will follow road for some dis-

tance.
46.1-.6 Onondaga  Limestone.  Section  between  46.5-.6  exposes  Edgecliff,  Nedrow and  lower  Moorehouse 

members.
46.9 Fork left onto Rte. 23a.
47.1 Park along shoulder, and walk ahead to prominent outcrop.

STOP 2. LOWER DEVONIAN RAMP CARBONATES AND THE INITIAL ACADIAN CLASTIC WEDGE, 

THE SPROUT BROOK K-BENTONITES, AND THE WALLBRIDGE UNCONFORMITY (45 MINUTES). 

This is another classic Devonian locality, chiefly noted for its prominent structural folds. However, several addition-
al characters of the outcrop provide a record Acadian Lower Devonian activity in the Acadian mountain belt. These 
include the Wallbridge unconformity; a carbonate-quartz arenite suite of rocks succeeded by the first major influx of 
Acadian synorogenic sediments; migration of the foreland basin foredeep into the Catskill Front; and a second major 
cluster of altered volcanic tephra beds. The Glenerie-Esopus contact at this outcrop lies approximately 90 m strati-
graphically above the Taconic unconformity, seen at Stop 1.

The units visible at Stop 2, from low to high include the top of the Port Ewen Formation, the Wallbridge unconform-
ity, local chert facies of the Glenerie, and a rare, complete section of the overlying Esopus Formation. At the far end 
of the outcrop, along the NYS Thruway, lower strata of the Schoharie Formation are visible.

The top of the Port Ewen Formation, a shaly limestone analogous to the New Scotland formation, directly underlies 
the Wallbridge unconformity here. The Wallbridge, which marks one of the major Phanerozoic sea level lowstands 
in North America (Sloss, 1963), is of relatively short duration in the Hudson Valley. Deposition across the interval is 
continuous in the Port Jervis area, where New York, New Jersey, and Pennsylvania meet. 

Immediately overlying the Wallbridge unconformity is a conglomeratic lag bed at the base of the Glenerie Forma-
tion. The conglomerate in the area of Catskill is largely composed of phosphatic pebbles with scattered milky quartz.  
To the south, beginning near Kingston, a conglomerate unit of milky quartz wedges in below the Glenerie. This unit, 
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termed the Connelly Conglomerate, is the oldest conglomerate found in the New York Devonian (Table 2). Its quartz 
composition (>99% milky quartz) contrasts with younger pebbly to conglomeratic strata in the Catskill front, which 
feature a more diverse composition (Table 2). The conglomeratic base of the Glenerie locally near Catskill is domin-
ated by chert; to the south, it transitions into silica-rich limestones, and to the north to the quartz sand-rich Oriskany 
Sandstone.

Glenerie-Esopus contact is relatively gradational at Stop 2 and in the eastern New York region. Elsewhere across the 
central to southern part of the basin, the contact is generally more sharp (Ver Straeten, 2007a). It marks a time of  
foundering of widespread shallow marine ramp conditions, and progressive subsidence and migration of the foreland 
basin foredeep into eastern New York, during the onset of the first Acadian Tectophase recognized by Ettensohn 
(1985). In reality, at least one previous tectonically active to quiescent “tectophase” likely occurred during the Late 
Silurian to Early Devonian parts of the Acadian orogeny. 

The mudstones, shales, siltstones and sandstones of the Esopus Formation mark the first significant influx of Acadi-
an synorogenic clastics into the Catskill Front and the Appalachian basin. Migration of the orogenic front across 
New England has by the Emsian Stage moved far enough cratonward for the foredeep segment of the foreland basin 
system to migrate west of the present day Hudson River. Petrologic data from Rehmer (1976) indicates that fine 
sandstones to siltstones of the Esopus are rich in quartz (~33-55%), with a high concentration of matrix (~19-49%), 
and minor amounts of fragmentary mica and chlorite, detrital and diagenetic chert, and pyrite. 

Detailed work by the author on Emsian-age (upper Lower Devonian) strata of the Esopus and Schoharie formations 
and equivalent strata across the Appalachian basin (Ver Straeten, 2007a),  along with geochronologic age dating 
(Tucker et al., 1998; Kaufmann, 2006), outline a longer, more complex history to the Emsian stage in the eastern 
U.S. than has been appreciated . U-Pb dating indicates a duration on the order of 15-18 million years for the Emsian 
(Tucker et al., 1998; Kaufmann, 2006), and that it’s global sea level history comprises five major third order cycles 
(Ver Straeten, in press), not one as previously interpreted by Johnson et al. (1985). 

To the author, one of the key stories linking the foreland and orogenic belt is tied a series of thin, tan-colored clay 
beds in the lower part of the Esopus Formation here (Spawn Hollow Member). These are the Sprout Brook K-
bentonites, 15 altered volcanic tephras dated at 408.1 +/- 1.5 Ma (Tucker et al., 1998). In contrast with other Devoni-
an clusters of K-bentonites in the Appalachian basin, these are geographically restricted to eastern New York (Ver 
Straeten, 2004a, b). The age of the Sprout Brook K-bentonites cluster overlaps with dates of numerous volcanic and 
plutonic rocks in the northern Appalachians, predominantly in Maine (e.g., Bradley et al., 2000; and additional refer-
ences in main body of this paper). This includes the Katahdin Granite and co-magmatic Traveler Rhyolite of central 
Maine; the Traveler alone, from only one of many volcanic centers of lower Emsian age, is conservatively estimated 
to have a volume on the order of the largest Cenozoic-age tuffs in the western U.S. (Rankin and Hon, 1987; Ver 
Straeten, 2004b). It is plausible that explosive, plinian-type volcanoes in northern New England were the source of 
the tephra deposited in eastern New York.

As at Stop 1, the age of deformation of the strata here is unknown. An interesting point here is the relationship of de -
formation to the Sprout Brook K-bentonites. The soft, unlithified clay beds form a sharp rheological contrast with 
their interbedded thin chert and shale beds. Slippage largely appears to follow the clay beds, which in places appear 
to have been squeezed through the folds (“like toothpaste”). This is well seen in the uppermost K-bentonite, which 
varies in thickness from zero to over 1.5 meters along the outcrop over the central anticline. The K-bentonites prob-
ably helped concentrate deformation along this zone in the Catskill Front and into the subsurface, the position of a 
major decollement in the Catskill Front/Little Mountains fold-thrust belt according to Marshak (1986).

At end of Stop 2, return to cars.
47.1 To continue, pull ahead and turn around near base of outcrop. Proceed west on Rte. 23a.
47.3 Pass Cauterskill Road.
47.4 Cross over NYS Thruway. Prominent exposures of Lower Devonian Schoharie Formation.
47.6 Pass  Old  Kings  Highway on  left.  Topmost  Schoharie  and  Edgecliff  Member  of  Middle  Devonian 

Onondaga Limestone exposed along beginning of Road (Stop 3B of Ver Straeten and Brett, 1995).
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47.65 PARKING OPTION 1 FOR STOP 3: Pull onto shoulder and park. If you wish to use option 2 for park

ing, proceed ahead on Rte. 23. Folded Nedrow and Moorehouse members (Onondaga Limestone) ex-
posed on left. To proceed from here to Stop 3, carefully walk 0.3 miles ahead to east (proximal) side of 
bridge over Kaaterskill Creek. Walk down steep slope on south (left) side of bridge to exposure along 
creek. 

47.95 Cross over Kaaterskill Creek. Drive across valley of easily eroded Bakoven Member black shales.
48.45 Turn around at intersection of Rte. 23 and Underhill Rd. Then return east on Rte. 23
48.6 PARKING OPTION 2 FOR STOP 3: Pull onto shoulder and park in grassy area. To proceed from here 

to Stop 3, carefully walk 0.3 miles ahead to the far side of bridge over Kaaterskill Creek. Walk down 
steep slope on south (left) side of bridge to exposure along creek.

STOP 3. MIDDLE DEVONIAN RAMP CARBONATES AND THE SECOND ACADIAN CLASTIC 

WEDGE, AND TEPHRAS (30 MINUTES). Note: No hammers or collecting from the Onondaga-

Bakoven contact – it is a rare exposure. The creek exposure is on private property - ask permission 

for access.

Strata exposed at Stop 3 include the uppermost limestones of the Middle Devonian Onondaga Formation and overly-
ing black shales of the Bakoven Member of the Union Springs Formation (lower part of the Marcellus subgroup of 
Ver Straeten and Brett, 2006). At least one K-bentonite of the Tioga A-G K-bentonite cluster is exposed here. The 
first part of the outcrop is along Kings Highway and Rte. 23a, where the lower to middle Onondaga Formation is ex -
posed (Edgecliff, Nedrow and Moorehouse members). Walk westward down the hill to the south side of the bridge 
over Kaaterskill Creek, where the top Onondaga (Seneca Member?) and lower Bakoven Shale are exposed along the 
creek. This outcrop lies approximately 270 m stratigraphically above the Taconic unconformity, seen at Stop 1.

Above the Esopus Formation at the previous stop, the Schoharie Formation is transitional from extrabasinal 
clastics to intrabasinal carbonates. This shift culminates in deposition of the Middle Devonian Onondaga Limestone. 
Onondaga-equivalent carbonate-rich facies occur widely across eastern North America; they mark a shutdown of  
clastic sedimentation in the northern Appalachian basin, although to the south in deeper parts of the basin (PA 
through VA-WV), the interval marks more of a decline in % clastic content, and deposition of mixed carbonate-
clastic facies. 

Base of Onondaga is a lowstand of sea level. In the Schunnemunk outlier north of NYC, and in the area of Palmer-
ton, eastern PA, lower Onondaga +/- upper Schoharie strata are represented by shallow marine quartz sandstones 
conglomerates. Exclusively quartz pebbles also occur scattered through strata at two positions within the Schoharie 
Formation. Furthermore, rare quartz pebbles have also been found in the same position in the Moorehouse Member 
and equivalent strata in central New York and central Pennsylvania. Curiously, widespread occurrence of quartz-rich 
strata are a contrast with the synorogenic sediments of the Esopus Shale below. Conditions that permitted prograda-
tion of Esopus extrabasinal clastics no longer existed.

Here at Stop 3 we stand at a major depositional shift, where relatively shallow marine carbonates are succeeded by 
basinal organic-rich black shales (by some estimates representative of ca. 100-200 m depth). A prominent bone-rich 
phosphatic lag interval at the formational contact marks a period of sediment starvation across the transition. A sim-
ilar lag bed occurs along the Onondaga-Bakoven contact into western New York, overlying progressively younger 
uppermost Onondaga strata in that direction. The top of the Onondaga progressively youngs to the west, indicated 
but by the progressive upward appearance of the Tioga B, B’, C, D, E, and F K-bentonites with the thickening of up-
per Onondaga (Seneca Member) strata to the west. This younging is associated with earlier foundering and subsid-
ence of the foredeep of the foreland basin in eastern New York; subsequently, the shallow Onondaga ramp progress-
ively subsided to the west, due to loading and uplift during the onset of Acadian Tectophase II of Ettensohn (1985).

The Onondaga to lower  Union Springs Formation and equivalent strata  across eastern North America are well 
known for the occurrence of the Tioga K-bentonites. Actually, the so-called “Tioga” interval comprises two major 
clusters of volcanic tephras (Ver Straeten, 2004a, 2007a). In the northern and central part of the Appalachian basin, 
an upper cluster of eight beds (Tioga A-G K-bentonites) occurs widely in upper Onondaga and Union Springs-equi-
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valent strata. A lower cluster of up to 32 beds, previously correlated with the Tioga A-G K-bentonites, is found only 
in middle Onondaga-equivalent strata in the southern part of the Appalachian basin (Virginia and West Virginia; Ver 
Straeten, 2004a, 2007a). The lower cluster has been dated at 391.4+/-1.8 Ma (Tucker et al., 1998), the upper one at 
390+/- 0.5 Ma (Roden et al., 1990). They appear to be sourced from volcanic centers in northern Virginia and south-
east of the Stroudsburg, PA area, respectively (Dennison and Textoris, 1970, 1978; Ver Straeten, 2004a). At Stop 3, 
some of the long bedding planes exposed along Rte. 23a may represent thin K-bentonites. Along the creek exposure, 
a thin centimeter-thick clay bed 35 cm below the contact is a K-bentonite. Another thicker bed, possibly the widely 
known Tioga B K-bentonite bed from the base of the Seneca Member in New York, is covered just above the base of 
a small gully closer to the bridge.

At end of Stop 3, return to cars. If you used the first option for parking, follow directions to Underhill  

Rd., turn around and follow directions from 48.6 miles. 
48.6 Proceed ahead, eastward, on Rte. 23a.
49.4 Cross over NYS Thruway again.
49.5 Fork left onto Cauterskill Road, then immediately turn left again at stop sign.
50.1 Kaaterskill creek visible along road again, on left.
51.4 Turn left at bridge, and remain on Cauterskill Road.
52.6 Cross over NYS Thruway.
53.5 Pass Vedder Mountain Road on left
53.55 Turn left onto Vedder Road.
54.4 Exposures of upper part of the Mount Marion Formation on left.
54.6 Pull onto shoulder of Vedder Road and park.

STOP 4. NEARSHORE MARINE CLASTICS, UPPER MOUNT MARION FM. (30 MINUTES).  This stop 
examines shallow marine clastics (upper part, Middle Devonian Mount Marion Fm.), not far below the transition 
into terrestrial strata (Ashokan Fm. and higher strata). Exposed along Rte. 23 are approximately 12.3 m of sand-
stone-dominated strata. Well defined hummocky cross beds, indicative of storm processes low in the outcrop are re-
placed above by mega-ripples (dunes), suggesting an overall shallowing up succession. Intraformational conglomer-
ates and soft sediment deformation zones are also visible in the upper part of the outcrop. The strata at Stop 4 are ap -
proximately 750 m stratigraphically above the Taconic unconformity at Stop 1. 

Two sandstone beds with reworked, intraformational pebbles and brachiopods are visible in the upper part of the 
outcrop. Along Catskill Creek, approximately 0.8 km to the north-northwest, a conglomerate with abundant macro-
crystalline milky quartz and chert, with lesser numbers of sandstone and other clasts, was reported by Wolff (1967) 
and exposed in the late 1980s. It is presently covered in the creek bed. The author has noted multiple thin, some-
times lensing conglomerate beds in the upper Mount Marion Formation along and in the forest off of Rtes. 28 and 
28a northwest of Kingston. They also mark the progradation of gravels into the Catskill Front at approximately 388 
Ma, possibly concentrated into beds during the lowstand or basal transgressions of small scale (fifth to sixth order) 
cycles (e.g., Bergman and Walker, 1987; Smith and Jacobi, 1998).

Compositionally (Table 2), these conglomerates contrast sharply with the only white quartz pebble compositions of 
conglomerates and scattered pebbles in older strata (Connelly Formation; Schoharie Formation; Kanouse, Palmerton 
and Onondaga/upper Needmore formations) in New York and Pennsylvania. The relatively high concentration of 
various-colored cherts in the conglomerates also contrast with relatively chert poor compositions of overlying con-
glomerates in the Devonian succession. This indicates a relatively significant source of chert in rocks exposed in the 
Acadian orogen at this time. The upper Mount Marion conglomerates 

Smith’s (1970) petrographic studies of upper Mount Marion sandstones in the Catskill front found that the sands 
were composed of a mix of mono- and polycrystalline quartz, chert, metamorphic and sedimentary rock fragments 
with less abundant chlorite, other micas, and plagioclase feldspars. His reported average compositions for the upper 
Mount Marion strata (“Solsville” and overlying “Pecksport” equivalents, 5 and 8 samples, respectively) are: Quartz 
+ chert = 50.0 & 37.4%; matrix = 9.1 & 13.2%; rock fragments = 37.6 & 41.1%; and carbonate = 1.6 & 8.3%. The 
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presence of slate and phyllite fragments, along with recycled sandstone and limestone grains indicated erosion of 
low grade metamorphic and sedimentary rocks in the Acadian orogen by approximately 388 Ma.

On the south side of the outcrop, along Vedder Road, two zones of soft sediment deformation can be seen in the up-
per part of the outcrops (Figure 15b).  These potentially represent “seismite” beds, formed when severe seismic 
shocks from the Acadian orogen triggered liquification of the loosely packed sands, and their subsequent, more con-
densed repacking, and expulsion of excess water. 

The first outcrop west of Five Mile Woods Road, on the south side of Rte. 23, exposes roughly five meters of inter-
bedded sandstone and dark gray mudstones. Two sandstone bodies (ca. 1.5 and 3 m-thick) are not notably cross-bed-
ded or erosively based; small delicate traces in the intervening mudstones may represent small plant root traces. The 
outcrop may be the lowest terrestrial deposits exposed along Rte. 23. If so, it could represent a thin tongue of ter-
restrial facies within the upper Mount Marion Formation, as seen near Kingston (Stop 8 of Ver Straeten and Brett, 
1995), or deposits low in the overlying Ashokan Formation. 

Strata from the lowest redbeds to the top of Slide Mountain, the highest peak of the Catskills, comprise approxim-
ately 1.9 km thickness of Middle to Upper Devonian strata (lower Givetian to upper Frasnian stages, Rickard, 1975).  
They were almost exclusively deposited in fluvial-dominated, terrestrial environments. These strata will be seen at 
subsequent Stops 5-7, and in road cuts along the route.

At end of Stop 4, return to cars.
54.6 Proceed ahead on Vedder Road.
54.65 Turn right onto Five Mile Woods Road, then turn left onto Rte. 23 (westbound).
55.0 Interbedded sandstones and shales on south side of Rte. 23. 
56.2 Lowest exposure of terrestrial “redbeds” of Plattekill Formation along Rte. 23. Lower red and green 

mudrocks (including paleosols) deposited on floodplain, overlain further along road by channel sand-
stones. Outcrops for next ~10 miles (to ~66.1 miles) are in the Plattekill Formation.

57.8 Intersections with Silver Spur Road. Good exposure of Plattekill Formation along Silver Spur Road to 
left.

59.2 Intersection with Rte. 32, which joins Rte. 23 here for a short distance. For a “pit stop” at McDonalds, 

turn left onto Rte. 32 south, and then right into parking lot. 

60.0 Very good exposures of Plattekill Formation. Pull onto shoulder and park for optional stop.

(OPTIONAL) STOP 5. MIDDLE DEVONIAN FLUVIAL CHANNEL AND FLOODPLAIN DEPOSITS (30 

MINUTES). This outcrop of the Middle Devonian Plattekill Formation exposes typical terrestrial facies of the 
Catskill delta complex, as developed in the Catskill front. The strata at Stop 5 are roughly a little less than one 
kilometer stratigraphically above the Taconic unconformity (Stop 1).

Along the outcrop (ca. 11.6 m-thick), two channel sandstone bodies and two sandy to muddy floodplain deposits, in-
cluding ancient soils (paleosols) are visible. Fining up pairs of channel sandstones to floodplain deposits in the Cat-
skills are interpreted to represent thousands to tens of thousands of years (Bridge, 2000).

The lower “mudrock” unit (ca. 2.0 m-thick) is characterized by dark gray to gray shales that grade upward into inter -
bedded thin sandstones and green mudstones. The upper 40 cm have a blocky texture and feature small-scale slick-
ensided surfaces (pedogenic slickensides), associated with soil development.

Lower strata of the overlying sandstone body (ca. 4.2 m-thick) grade laterally between gray sandstones, dark gray 
shaly sandstones, and intraformational conglomerates, of which at least one is dominated by calcareous nodules, 
eroded and reworked from erosion of paleosols upstream, Cross-bedded sandstones above feature more than one 
channel (multi-storied) up through the succession. 

The top of the channel is marked by a 0.7 m-thick interval of more tabular sandstone beds, which grade upward into 
ca. 1.2 m of red mudrock-dominated strata, deposited across a floodplain after migration of the channel. Centimeter-
scale vertical traces, often green in color represent root traces of Eospermatopteris-type cladoxylopsid trees, similar 
to the famous tree stumps found near Gilboa, higher in the Catskills. In places, the roots have extensively bioturb-
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ated the sediments. In addition, the upper 40-60 centimeters feature multiple “dish/gilgai/pseudoanticline” soil de-
formation structures, and pedogenic slickensides occur through the strata. These features form by wetting and drying 
of expandable smectite (montmorillonite) clay rich, fine-grained sediments, and indicate the development of vertic 
paleosols. 

The upper unit (ca. 3.5 m exposed) is another multi-storied channel sandstone body. Mudrock lenses occur locally 
along the outcrop, and prominent, down-cutting erosional surfaces are overlain by additional channel deposits. The 
sandstone bodies are interpreted to be deposited in single channel, sinuous (“meandering”) rivers, which migrated 
across vegetated alluvial plains (Bridge, 2000).

Sandstone petrologic studies by Gale (1985) through the Plattekill to Slide Mountain formations in the Catskills 
found that composition of the sandstones is relatively consistent. Mono- and polycrystalline quartz, foliated meta-
morphic rock fragments and sedimentary rock fragments comprise 80% or more of the sandstones (Gale, 1985). 
Low in the succession (e.g., Plattekill Formation), sandstones contain a greater percentage of foliated metamorphic 
rock fragments and a correlative lower concentration of quartz. The sandstones are relatively clay poor, and are best 
defined as lithic to sub-lithic arenites (Gale, 1985). Overall, the sand-size fraction increases in grain-size upward 
through the succession, as environments change from lowland to transitional lowland-upland alluvial plain environ-
ments. 

Plattekill Formation sandstones analyzed by Gale (1985; 10 samples) feature concentrations of foliated metamorphic 
rock fragments between 19-47%, in sharp contrast with the Slide Mountain Formation (3-17%; 5 samples); total 
macrocrystalline quartz (mono- + polycrystalline) in the Plattekill comprises 25-50 % of the rock, compared with 
47-62% in the Slide Mountain Formation. In addition to quartz, metamorphic rock fragments and sedimentary rock 
fragments (10-23%), lesser amounts of chert (0.4-3.6%), plagioclase and orthoclase feldspars (0.2-1.9%), along with 
chlorite and micas, illite and kaolinite are found in Plattekill Formation sandstones (Gale, 1985). 

Analysis of the clay minerals in the Catskill succession, and marine strata beyond, indicate a dominance of illite 
with lesser amounts of chlorite and minor kaolinite (e.g., Friend, 1966; Hosterman and Whitlow, 1983). However, 
vertic paleosols, as relatively well developed in the upper floodplain deposit, form in smectite-rich sediments. These 
clays, which swell and shrink with wetting and drying, are derived from igneous sources. The abundance of vertic 
paleosols in the Catskill succession appear to represent an otherwise hidden component of sediments derived from 
igneous sources. The sources could be derived from weathering of plutonic or volcanic rocks in the source area, or 
from volcanic ash erupted from explosive volcanic eruption in the Acadian orogenic belt.

At this time, only intraformational conglomerates/breccias are known by the author in the Plattekill Formation (Fig-
ure 9d). The clasts in these beds consist of reworked calcareous nodules (“peds”) reworked from paleosols, or chips 
of mud. They commonly occur in the base of channel sandstone deposits.

At end of Stop 5, return to cars.
60.0 Proceed ahead on Rte. 23.
60.3 Continue straight ahead. Rte. 32 turns to right (North). More excellent exposures of Plattekill Formation 

are visible along Catskill Creek, 1.4 miles north. Outcrops include well exposed bedding plane and 
cross-sectional exposures of fluvial channel sandstones and floodplain mudstones. Also found (some 
distance upstream of abandoned dam) is a ~1.5 m-thick interval of carbonate-rich facies, capped by a 
thin (ca. 20 cm-thick) limestone bed indicative of lacustrine facies in floodplain environments. NOTE: 
Exposures along the creek are on private property. And pay attention to extensive No Parking signs 
along Rte. 32 near Catskill Creek.

60.6 Get into left lane. 
60.85 Stop sign at intersection with Rte. 145. Proceed ahead.
61.0 Exposures of Plattekill Formation along Rte. 23.
61.5 Peaks of Acra Point, Burnt Knob, and beyond, Windham High Peak (3524’) visible in distance.
66.1 Cairo-Durham town line. Approximate position of Plattekill-Manorkill (“Moscow”) formational bound-

ary, according to Fisher et al., (1970).
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66.9 Good exposures of Manorkill Formation along south side of road, near interesting and unusual build-
ings. Additional exposures of the Manorkill along highway ahead.

68.0 Fork right into large parking area. Pull ahead and park.

LUNCH STOP (20 MINUTES).

STOP 6. FLOODPLAIN AND CHANNEL SANDSTONE DEPOSITS, EAST WINDHAM (45 MINUTES). 

Over 60 m of mudrocks, sandstones and a thin limestone bed in the Manorkill Formation at Stop 6 represent depos-
ition in floodplain, fluvial channel, and lacustrine environments on the subaerial delta plain of the Catskill delta 
complex. It is possible that a part of the section may represent some brackish water conditions however. This out-
crop is roughly 1.25 km stratigraphically above the Taconic unconformity at Stop 1.

Low in the part of the outcrop facing the parking area, another red paleosol zone with green, cm-scale diameter root 
traces of cladoxylopsid trees is visible, more easily seen than those at the last stop. Additional paleosols along the 
outcrop show varying development (Mintz et al., 2006). Along the outcrop, floodplain deposits vary between red, 
green, yellow-tan and dark gray/black mudstones and lesser fine-grained sandstones. Several sandstone bodies occur 
along the outcrop also, though few are thicker than 1-2 m.

Around the bend and uphill from the parking area, a prominent sloping-to-the-right interval of yellowish-green strata  
is succeeded by a zone of thin sandstones and dark gray mudrocks, at a distinctly different angle to the underlying 
beds. A number of isolated soft sediment deformation pillows occur along the outcrop within the lower approxim-
ately 1-3 m of the upper unit. 

Higher in the section, downhill from the first driveway uphill of the bend, a prominent, thin ledge of limestone sticks 
out from the outcrop. Fallen slabs of the bed can be seen in the talus. Light gray to brown-gray, varyingly smooth to 
knobby in appearance, the fauna noted in the bed consists of ostracodes. Mintz et al. (2006) state that the bed ap-
pears to have been pedogenically modified and brecciated. It is over and underlain by red to green paleosols.

Apparent lacustrine (lake) and palustrine (wetland) facies, including similar thin limestones, are not often discussed 
but not unknown in Upper Devonian Catskill magnafacies (DeMicco et al., 1987; Dunagan and Driese, 1999). Sim-
ilar  limestones  are  documented  from Devonian  terrestrial  facies  in  Canada,  Great  Britain  and  Australia  (e.g., 
Donovan, 1975). They are generally interpreted to have formed toward the center of ponds and lakes, beyond the 
transport of fine-grained clastics. Carbonate is derived from calcareous, photosynthetic algae (e.g., charophytes). 
The author has found multiple apparent freshwater limestones in the Plattekill and Manorkill formations along the 
Catskill Front. Lacustrine and palustrine/wetland environments comprise an interesting and relatively overlooked fa-
cies in the Catskill Front, which deserves more attention. 

A short distance above the limestone, along the lower part of a driveway, an interval of olive-colored, mudrock-
dominated strata above the limestone, best seen along the lowest part of a driveway, features common fish bone ma-
terial, ostracodes and desiccation cracks. Also found in the interval are Spirophyton trace fossils, which have been 
interpreted by some to have lived in freshwater setting (Bridge and Gordon, 1985; DeMicco et al., 1987), but by oth-
ers (Gordon, 1988; Miller, 1991) to indicate brackish water conditions. Miller (1991) proposed that the animals pro-
ducing Spirophyton lived in ephemeral ponds on the coastal floodplain, with fluctuating fresh- to brackish water sa-
linities, perhaps tied to floods of brackish water that flowed upstream and spread across floodplains during major 
storms. 

As in other fluvial-dominated strata of the Catskills, Manorkill Formation sandstones analyzed by Gale (1985; 3 
samples) feature common mono- and polycrystalline quartz (29.6-60.0%), and foliated metamorphic and sediment-
ary rock fragments (30.4-41.8% and 9.3 to 22.0%, respectively). lesser amounts of chert (0.2-0.7%), plagioclase and 
orthoclase feldspars (1.6-4.3%), along with chlorite and micas, illite and kaolinite are found in Manorkill sandstones 
(Gale, 1985). This represents a subtle shift toward increased quartz content from the underlying Plattekill Formation.  
With the exception of a single bed at or near the base of the Manorkill Formation, conglomerates known to the au-
thor at this point are intrabasinal ones, with reworked mud or pedogenic carbonate nodules. 

At end of Stop 6, return to cars.
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68.0 Drive ahead to exit from parking area. Then, TURN LEFT, and return back downhill on Rte. 23 toward 
Cairo. 

69.1 Peak of Burnt Knob and/or Acra Point ahead.
75.4 Intersection with Rte. 145.
75.9 Intersection with Rte. 32, which joins Rte. 23 for 1.1 miles. Village of Cairo on right.
77.0 Turn right, and follow Rte. 32 south.
77.25 Stop light, village of Cairo on right.
79.0 Channel sandstones of Plattekill  Formation. All exposures along Rte.  32 ahead are in the Plattekill 

Formation.
82.4 Area between here and turn at Rte. 23a are called the Kiskatom Flats, which we’ll see from above at 

Stop 7.
84.8 Turn right onto Rte. 23a, toward Palenville and Kaaterskill Clove.
85. 7 Note rise of the highway, ascending up alluvial fan out front of Kaaterskill Clove.
87.1 Stop light in Palenville.
87.6 Enter Kaaterskill Clove.
88.0 Lower bridge in  Kaaterskill  Clove.  Cross  over  Kaaterskill  Creek.  Excellent  exposures  of  Plattekill 

Formation upstream, including channel sandstones, floodplain deposits, and at least one more apparent 
freshwater limestone.

88.3 Area of “High Rocks” of Chadwick (1944, Fig. 47).
89.0 Middle bridge in Kaaterskill Clove. Excellent exposures of red mudstone/paleosol facies of Manorkill 

Formation at and above bridge.
90.5 Upper bridge in Kaaterskill Clove. Excellent exposures of Oneonta Formation upstream, along trail to 

base of Kaaterskill Falls.
90.7 Parking area for trail to Kaaterskill Falls.
90.8 Classic exposures of Oneonta Formation along road, with well developed paleosols.
91.4 Twilight Park entrance on right, near village of Haines Falls.
91.6 Top of Kaaterskill Clove
92.1 Turn right onto North Lake Road.
93.9 Bypass road to Kaaterskill Falls to right.
94.4 Entrance to North-South Lake Campground, in Catskill Park. Drive ahead to booth and pay entrance fee 

($8/car at time of field trip). Proceed forward to parking area for North Lake. At stop sign ahead, con-
tinue ahead to North Lake.

96.1 Parking area for North Lake and trails along the Catskill Escarpment.

REST STOP: Restrooms on the east side of the parking area at North Lake.

Stop 7. UPPER DEVONIAN CLASTICS, NORTH-SOUTH LAKE (1.5 HOURS). Note: No hammers or col-

lecting at this stop (a Catskill Park campground, run by NYS-DEC). 

At this stop, we will walk north along the Catskill escarpment to Artists Rock and Sunset Rock. The rocks exposed 
comprise lower strata of the Upper Devonian Oneonta Formation, and will include the Twilight Park Conglomerate 
Member (at Sunset Rock). The latter outcrop is approximately 1.5 km stratigraphically above the Taconic uncon-
formity at Stop 1. Another ~1.2 km of strata overlie the Twilight Park Conglomerate, to the top of Slide Mountain, 
the highest peak in the Catskills.

The Escarpment trail going north from the parking area at North Lake slowly rises upward through a major sand-
stone ledge that caps the Catskill escarpment here. Termed the “Kaaterskill Sandstones” by Chadwick (1944), they 
form the lower part of the Upper Devonian Oneonta Formation. Sandstones dominate the strata along the trail to 
Artists Rock. An abandoned trail a short distance beyond Artists Rock exposes red mudstones that lie between major 
sandstone packages. 

Partway along the trail to Artists Rock, shortly after a several-meter rise up through the lower Oneonta sandstones, 
an odd set of sedimentary structures occur in the sandstones in the trail. At first glance, they appear to be trough 
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cross beds. On closer observation, however, the edges of the troughs are vertical to near vertical, well beyond the 
angle of repose. The vertical edges are water-escape structures, along the margins of foundered bowls of sandstone. 
This represents another soft sediment deformation zone, developed in sand-only facies (as found at Stop 4). The au-
thor has not examined their correlatability, although previous workers have noted disturbed soft sediments elsewhere 
in the area, in the lower part of the Oneonta Formation. If the feature is relatively widespread, it could possibly rep-
resent a “seismite”, triggered by a significant seismic shock during the Acadian orogeny. Without more evidence 
(e.g., correlatability across a broad area), this is only conjecture.

Mono- and polycrystalline quartz comprise approximately 37.9-59.1 % of the rock in petrographically analyzed 
sandstones of the Oneonta Formation (Gale, 1985). The concentration of foliated metamorphic and sedimentary rock  
fragments (15.7-33.4% and 8.7 to 21.1%, respectively) have decreased relative to underlying strata, while the con-
centration of quartz has increased. The concentration of other components (e.g., chert, feldspars, chlorite and micas, 
etc.) remain about the same as in the underlying Manorkill and Plattekill formations.

There is a rise of approximately 530 m (1750’) from the Kiskatom Flats below. In the distance to the east, the Tacon-
ic Mountains are visible along the New York-Massachusetts border; high peaks of the Berkshire Mountains (includ-
ing Mount Greylock) locally project above the Taconics. Farther to the north/left, the Green Mountains are visible in 
Vermont. These highlands today expose low grade metamorphic rocks (e.g., slates and phyllites in the Taconics; 
some schist in the higher Berkshires and Greens).  However, those rocks would have been deeply buried under 
younger rocks during the Devonian Acadian orogeny.

At Sunset Rock, up the trail beyond Artists Rock, a 23 m-thick outcrop of the Twilight Park Conglomerate (member 
of the Oneonta Formation) is very well exposed. The unit marks the first major progradation of clastics into the Cat-
skill front from the Acadian orogen. Bridge and Nickelsen (1985) hypothesized that the progradation was due to in-
creased slope due to tectonic changes, stating that climate did not appear to vary through the interval. In this case, a 
base-level drop associated with a significant sea level fall was not discussed. Bridge and students generally dismiss 
eustatic sea level controls over processes active in the terrestrial  settings of the Catskill magnafacies. However, 
Devonian workers (e.g., House and Kirchgasser, 1993; Brett and Baird, 1996; Bartholomew, 2006; Ver Straeten, 
2007a, in press) have now established significant eustatic control over sea level changes in New York’s marine suc-
cession. And that tectonic patterns of flexure are superposed over the record of third order sea level cycles/strati-
graphic sequences (Figure 8).

The author proposes a counter hypothesis, that Twilight Park gravels may have prograded basinward during one of 
the major sea level falls near the Middle-Upper Devonian boundary. As there is no tight control over where the 
Middle-Upper Devonian boundary actually occurs in the Catskill front, that sea level drop could be one of a few 
near the boundary. 

Petrologically, clastic rocks of the Catskill front indicate that rocks exposed in the Acadian orogen consisted of dom-
inantly low grade (up to greenschist) metamorphic and sedimentary rocks. Rare igneous- or high grade metamorph-
ic-derived sediments indicate only very minor exposure of such rocks. A hidden source of more igneous than previ-
ously thought  seems to  be  indicated by common vertic  paleosols,  which  form in smectite  clay-rich  sediments 
(smectite clays are derived from the weathering of igneous rocks, including volcanic ash). 

A number of previous authors hypothesized that Cambrian and Ordovician rocks in the Taconics region were the 
source of the Devonian Catskill delta sediments. However, beginning in the Late Silurian, the Acadian orogen and 
the associated foreland basin developed on the far margin of eastern North America. Through the Lower Devonian, 
massive volumes of Acadian-derived sediments were deposited in the foredeep basin in New England, while the 
Hudson Valley was positioned in the back bulge basin to cratonward edge of the foredeep of the foreland basin sys-
tem. As the orogen progressively migrated cratonward toward eastern New York, Devonian sediments in that early 
Acadian foredeep basin (e.g., Littleton Formation of New England) were caught up in the deformational front of the 
orogen (e.g., wedge-top of the foreland basin system). Some of the Lower Devonian foredeep sediments were meta-
morphosed; metamorphosed or not, the foreland basin strata were thrust up, eroded and transported into the Catskill 
front. The clastic wedge, of which 2.7 kilometers thickness is preserved in the Catskills, by the latest Devonian ap-
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parently distributed muds as far west as northern Iowa (B. Witzke, pers. commun., 1999). Possibly by the Late 
Devonian, folding and thrusting of the foreland basin wedge-top may have migrated west of the Hudson River. 

At end of Stop 7, return to cars. 
96.1 Return to Rte. 23a in Haines Falls.
100.2 Intersection with Rte. 23a in Haines Falls. Turn left, unless driving west through the Catskills to get 

home.
105.1 Stop light in Palenville. To proceed to the NYS Thruway southbound at Saugerties, fork right onto Rte. 

32a, then Rte. 32 south. To proceed to the NYS Thruway northbound at Catskill, fork left and remain on 
Rte. 23a to Rte 9W, then Rte. 23 west, and then Rte. 23b to the Thruway entrance.
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